
IGLU
AI/IR for Java

Manual by Travis Bauer
2002

Email: trbauer@indiana.edu.

2

Contents

I Introduction and Setup 7

1 Introduction 9

2 Organization 11

3 Installation 13
3.0.1 Requirements . 13
3.0.2 Installation . 13

4 Conventions and Contributing 15

II Core IGLU Library 17

5 iglu.examples
Short Sample Programs 19

5.0.3 examples.ObjCat . 19
5.0.4 examples.ProxyServerExample 19

6 iglu.ir
Information Retrieval 21

6.0.5 Introduction . 21
6.0.6 API/Implementation for Information Retrieval 21
6.0.7 IR Evaluation . 22

7 iglu.jdbc
Database Connectivity Utilities 27

8 iglu.net
Internet Utilities 29

9 iglu.polka
Swing Extensions 31

3

4 CONTENTS

10 iglu.util
Utility Classes 33

10.0.8 Debug . 33
10.0.9 ObjectPager and descendents 34
10.0.10 TagTokenizer . 34

List of Figures

7.1 Illustration of Cascading Columns 28

9.1 A Sample Line Graph . 32

5

6 LIST OF FIGURES

Part I

Introduction and Setup

7

Chapter 1

Introduction

Welcome to the IGLU source code library. IGLU is an open source project started an
Indiana University’s Computer Science Department. It is an attempt to build a library
of general purpose Java classes for researchers in Information Retrieval. There are
some algorithms and utility classes which might be useful to many people doing re-
search in these areas which are time consuming to write when trying to build computer
simulations and models. The IGLU library is a set of packages to provide classes to
reduce this overhead.

This library does not provide many complete programs, other than a few example
classes. It contains the building blocks you need to build your own applications. The
goal is to provide useful code and examples while maintaining maximum flexibility.
So, for example, our search engine API does not create its own indices. We don’t
assume what algorithms will be used to index documents.

The library was first assembled by and code first contributed by Travis Bauer. Ryan
Scherle followed up with a set of utility classes and much of the iglu.ir library.

This library is distributed under the IGLU license, included with the source distribution.
Although we use these classes in our own research, we cannot verify their correctness
or usefulness for any particular purpose. Use them at your own risk.

This manual is not intended to be a replacement for the javadoc. Much of the specific
functionality is described in the javadoc files which can be view from IGLU’s main
homepage or generated from the source. This manual provides a broad overview of
IGLU’s functionality and to give the reader a model of its capabilities.

Please tell us if you find them useful (or if you find a bug). The team contributors can
be reached at iglu@cs.indiana.edu.

9

10 CHAPTER 1. INTRODUCTION

Travis Bauer: trbauer@indiana.edu

Chapter 2

Organization

The source code distribution of IGLU is as follows:

resources iglu

�
� � � �

src
Info Files build.xml docs javadoc build dist

��������������
�������
�
��� � � � �

� � � � � � � � �
� � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � �

iglu

iglu/src/iglu Under this directory are placed the actual source files

iglu/src/resource Non-java resource files (gifs, stop lists, etc).

Info files License files, README, etc.

build.xml Ant’s build file

docs The source code for this document.

javadoc Generated by ant javadoc, containing the javadoc for iglu.

build Contains the compiled jar files. Generated by ant build

dist Contains the distribution jar files. Generated by ant dist

The packages related to IGLU follow this same methodology for source code packag-
ing.

11

12 CHAPTER 2. ORGANIZATION

Chapter 3

Installation

3.0.1 Requirements

1. Java 1.3 or later (http://java.sun.com)

2. Ant 1.4 or later (http://jakarta.apache.org/ant)

3.0.2 Installation

IGLU is available from http://www.cs.indiana.edu/ trbauer

IGLU is distributed as two packages: one containing the source code and one contain-
ing the compiled class files. If you only want to use IGLU and are not interested in
modifying it, all you need is the jar with the class files.

To install the class-only file, simply include it in your classpath.

To install the source code, download and unjar the source code package. Then include
the iglu/build directory in your classpath. Compile the source code by executing ant
build from within the iglu directory.

13

14 CHAPTER 3. INSTALLATION

Chapter 4

Conventions and Contributing

We welcome any additional relevant class, bug fixes, and other enhancements.

All source files in the IGLU library should follow these conventions:

1. The first think in any file is a header which identifies the class name, the initial
author’s name and email address, and carries the IGLU copyright notice follow-
ing the format in the other source files.

2. The java documentation for the class should contain the initial author listed first
with a “@author” tag, and any contributing authors (people who modified the
class) following with “@author” tags.

Debugging statements can be permanently put in the code using the “Debug” call De-
bug.debugOut(CLASSNAME, ‘‘debug statement’’). This allows program-
mers to turn on and off the debugging statements for a given class with the De-
bug.setLevel method. See the section on the Debug class later in this document.
Keep in mind that these statement require a function call even when their statement
does not get printed out. This uses up processor time, so don’t leave these statement in
long loops, etc.

Although none of the classes currently contain it, authors should include a static method
with the following signature: public static boolean test(). This method
should run some tests on the class, and return true if the tests pass. Eventually, we will
add a utility which runs these tests on all the classes.

15

16 CHAPTER 4. CONVENTIONS AND CONTRIBUTING

Part II

Core IGLU Library

17

Chapter 5

iglu.examples
Short Sample Programs

The iglu.examples package offers some short example programs to illustrate how iglu
operates. The examples here are small. Some of the classes in IGLU also have main
methods which illustrate how they are used. See the javadoc pages for more informa-
tion.

5.0.3 examples.ObjCat

A simple utility which uses iglu.util.IOTools.objectFromFile to load a previously seri-
alized object from the disk. It then prints the object to the console using its toString()
method. If the object loaded is an array, it loops through the array, printing each object.

This is basically a “cat” utility for serialized objects which have been saved to a file.

5.0.4 examples.ProxyServerExample

A simple WWW proxy server. Illustrates how to use the iglu.net package.

19

20 CHAPTER 5. IGLU.EXAMPLES SHORT SAMPLE PROGRAMS

Chapter 6

iglu.ir
Information Retrieval

6.0.5 Introduction

This package has three main purposes:

1. To specify an API for Vector Space Information Retrieval research

2. To implement a set of classes to represent and implement documents, document
sources, and related algorithms.

3. To implement a testing harness for evaluating performance of Information Re-
trieval algorithms using standard IR evaluation techniques

We assume that the reader is familiar with the vector space model for information
retrieval. If not, there are numerous resources available.

6.0.6 API/Implementation for Information Retrieval

The Document interface serves as the basic interface for all document types in the
library. A document is an object which has content, indexable content, and can answer
basic questions about itself. It does not contain a location, a title, or any other “meta-
data.” A document is a document’s contents. The AbstractDocument abstract
class implements some basic functionality making it easier to create actual document

21

22 CHAPTER 6. IGLU.IR INFORMATION RETRIEVAL

types. Subclasses should implement actual document types, such as “HTMLDocu-
ment” which stores information about HTML documents.

The VectorCreator interface is the basic interface for all objects which can create
vectors from documents. Individual VectorCreators might have to be trained before
they can be used. The TFIDFVectorCreator is able to generate Term Frequency/Inverse
Document Frequency vectors from documents, but has to be loaded with a corpus first.

The SearchEngine interface is a java interface for search engines. By Search En-
gine, we mean an object which can store documents and related vectors, and conduct
search based on queries. Search Engines do not create vectors. The basic idea is that
VectorCreators are used to generate vectors for documents, and these vectors are given,
along with the documents to the search engine for storage. We have two search engines
implemented. One search engine keeps all the information in RAM. This is useful
for small tests or simple search engines that are not permenantly stored. The File-
SearchEngine is more powerful, indexing documents using an inverted index stored in
a B-Tree.

6.0.7 IR Evaluation

A basic type of evaluation for IR techniques it Precision/Recall. You start with a docu-
ment set, a set of queries, and a mapping from queries to documents telling you which
documents should be retrieved for each query. Then, using some indexing technique,
you generated indices for the documents and put them into a search engine. The queries
are sent to the search engine, and the results returned are analyzed to see how well the
indexing technique and search engine were able to retrieve the correct documents.

The kind of Precision/Recall results this package provides is consistent with the meth-
ods specified in the book Modern Information Retrieval by Ricardo Baeza-Yates and
Berthier Ribeiro-Neto.

IGLU provides a set of classes for performing this evaluation and analyzing the results.
This evaluation would be useful for the following:

1. Comparing two indexing techniques.

2. Comparing the effect of varying free parameters on a single indexing technique.

3. The performance of an indexing technique on different corpora.

For example, let’s say you have two different methods for generating indices for doc-
uments and want to know which method works better. To test the two methods, you
would do the following steps (Each step is described in more detail below):

23

Develop Vector Creators Write two vector creators, one that implements each of the
two methods you want to test.

Problem definition Get a corpus as a document set, a set of sample queries, and a
list of which documents in the document set should be retrieved for each query.
These are put together as an IRPacket object.

Precision/Recall Tests Create two PrecisionRecall objects, one for each of the vector
creators. Both should be constructed with the same IRPacket. Get the results
of running the test from each PrecisionRecall object.

Examine the results Use the IGLU classes, or your own classes to analyze the results
of the tests.

Develop Vector Creators

The first step in using an indexing technique with IGLU is to implement this technique
as a VectorCreator. A VectorCreator takes a document and produces a TermVector
for the document using the technique it implements. Some vector creators need to
be trained before being used. This functionality needs to be provided by the specific
implementation. Other vector creators (such as LSI) take an entire document set and
produce vectors for only those documents. An api for this kind of vector generation
will be included in a future version of IGLU.

Problem definition

To test an indexing technique, you need to gather a corpora, a set of queries, and a map-
ping from the queries to documents, telling you which documents should be retrieved
for each query. IGLU provides an IRPacket class which combines this information
into a single object. For more information on how these classes work, see IGLU’s
javadoc.

Precision/Recall

The PrecisionRecall class takes a vector creator and an IRPacket, and performs an IR
test. The test is as follows:

1. Index all the documents into a search engine using the given vector creator

2. Submit each query to the search engine and analyze the results, producing a
PRResult object.

24 CHAPTER 6. IGLU.IR INFORMATION RETRIEVAL

3. Return an array of PRResult objects, one for each query.

Examine the results

A single PRResult’s toString() method produces a summary of the query which looks
as follows:

Queryid: 1
Relevant: 299

Interpolated Recall - Precision Averages:
at 0.0 1.0
at 0.1 1.0
at 0.2 0.9855
at 0.3 0.9375
at 0.4 0.8523
at 0.5 0.8523
at 0.6 0.8295
at 0.7 0.0
at 0.8 0.0
at 0.9 0.0
at 1.0 0.0

Average precision (non-interpolated)
0.9403924816533139

Precision (interpolated)
at 5.0 docs: 1.0
at 10.0 docs: 1.0
at 15.0 docs: 1.0
at 20.0 docs: 1.0
at 30.0 docs: 1.0
at 100.0 docs: 0.8523
at 200.0 docs: 0.8309
at 500.0 docs: 0.0
at 1000.0 docs: 0.0

Actual Results
5.0 (1.0,0.017)
10.0 (1.0,0.033)
15.0 (1.0,0.05)
20.0 (1.0,0.067)

25

25.0 (1.0,0.084)
30.0 (1.0,0.1)
35.0 (1.0,0.117)
40.0 (1.0,0.134)
45.0 (1.0,0.151)
50.0 (1.0,0.167)
61.0 (0.984,0.201)
69.0 (0.986,0.227)
96.0 (0.938,0.301)
138.0 (0.833,0.385)
143.0 (0.839,0.401)
176.0 (0.852,0.502)
207.0 (0.831,0.575)
217.0 (0.829,0.602)
263.0 (0.776,0.682)

The top two sections are the interpolated precision recall numbers for the query results.
The last section are the actual results from the test.

This gives you the results for a single query. However, it is also desirable to get the
averages over the results for all the queries. The PRResultUtils class will perform
such calculations. It takes the entire array of PRResult objects returned by Precision-
Recall and summaries them. The summary method of PRResultUtils produces a string
that looks like the following:

#Recall -- Precision Averages
0.0 0.875
0.1 0.7431
0.2 0.3964
0.3 0.2344
0.4 0.2131
0.5 0.2131
0.6 0.2074
0.7 0.0
0.8 0.0
0.9 0.0
1.0 0.0

#Number of documents -- Precision Averages
5.0 0.75
10.0 0.7431
15.0 0.7431
20.0 0.7431
30.0 0.7431

26 CHAPTER 6. IGLU.IR INFORMATION RETRIEVAL

100.0 0.2131
200.0 0.2077
250.0 0.1939
300.0 0.0
350.0 0.0
500.0 0.0
1000.0 0.0

HINT: PRResult is serializable, as are arrays. That means you can get the results from a
PrecisionRecall test, and save them to disk using iglu.util.IOTools.ObjectToFile(...)
and get them back later using iglu.util.IOTools.ObjectFromFile(...).

Chapter 7

iglu.jdbc
Database Connectivity Utilities

This package contains utility classes for accessing databases. It has been extensively
tested with Postgres and contains a few Postgres specific methods, but should work
with any JDBC connection. Probably the most useful class is iglu.jdbc.JDBCUtils,
which hides the Exception handling and converts it into optional debug statements.

The SQLCascadingColumn class provides a way for the user to create a multi-
colum view of information in the database, where clicking on an item in one column
will trigger an sql query which fills in the next column. Figure 7.1 shows this class at
work.

27

28 CHAPTER 7. IGLU.JDBC DATABASE CONNECTIVITY UTILITIES

Figure 7.1: Illustration of Cascading Columns

Chapter 8

iglu.net
Internet Utilities

This package contains classes which aid with TCP/IP networking. The main class
currently in this package is a WWW proxy server. This proxy server can be run stand-
alone using iglu.examples.ProxyServerExample or incorporated into an-
other program. This proxy server is vastly improved over the previous version. It’s
faster and handles a wider range of web sites.

This aids in Information Retrieval research by providing a tool by which you can ob-
server the documents passing through a user’s web browser and record, index, analyze
those documents to develop user profiles or build a document database.

See the javadoc for more information.

29

30 CHAPTER 8. IGLU.NET INTERNET UTILITIES

Chapter 9

iglu.polka
Swing Extensions

This package contains a number of extensions to the Swing classes. Probably the
most interesting set of classes in this package are the graphing classes. You can use
the classes to create customizable two dimensional line graphs. The basic process of
creating a graph is as follows:

1. Create a unique GraphData2D object for each line you want on the graph.

2. Load these object with the points on the graph and set any customizable param-
eters you want.

3. Create the PLineGraph object and set customizable parameters.

4. Add the GraphData2D objects to the graph.

PLineGraph has the additional feature that it can highlight which point the mouse
pointer is closest to, and provide that point’s data for display or use elsewhere in the
program. A sample line graph is shown in Figure 9.1. This graph was generated from
the main function of PLineGraph, which thus provides a good base example for how to
use these classes.

31

32 CHAPTER 9. IGLU.POLKA SWING EXTENSIONS

Figure 9.1: A Sample Line Graph

Chapter 10

iglu.util
Utility Classes

This package contains a host of utility classes. All of them are described in their
javadoc. A few of them will get further description here.

10.0.8 Debug

This class is contains a number of methods useful for getting debugging information.

tic/toc

This is used for timing different parts of the code. Debug.toc() return the number of
seconds since the last time Debug.tic() was called.

setLevel(string[]), debugOut(string, string)

These methods are used to put in debugging statements which are conditionally printed
out. setLevel will specify which statements should be printed and debugOut actually
prints them out. So a call like Debug.setLevel(new String[] ‘‘JDBCU-
tils’’, ‘‘FileBTree’’) will cause the program to print out any debugOut
statements which have the format: Debug.debugOut(‘‘JDBCUtils’’, . .
.) or Debug.debugOut(‘‘JDBCUtils’’, . . .). This is useful because

33

34 CHAPTER 10. IGLU.UTIL UTILITY CLASSES

you can leave debugging statements in the code but “turn them off” in the sense that
they will not show up.

10.0.9 ObjectPager and descendents

In some situation, you may want thousands of objects in memory at one time, more
than the memory can hold. ObjectPagers gives you a repository to put such objects, and
retrieve them when needed. The FileObjectPager is the most useful of these classes. It
swaps object out to disk and brings them back in when requested. You give an object to
an ObjectPager and you get and ID back which you can later use to retrieve the object.

The greatest use of this class in IGLU is in the TermVector class. TermVectors are
transparently backed by an ObjectPager. By default, it is a RAMObjectPager, which
does not swapping, and only allows you to have around 10,000 or less large vectors.
But if you tell the TermVector class to use a FileObjectPager, making no other changes
to you code, you can create a virtually unlimited number of TermVectors without wor-
rying about swapping them in an out of memory.

10.0.10 TagTokenizer

Just like StringTokenizer, but can use string, not only characters as delimiters.

